Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Total Environ ; 856(Pt 1): 158955, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36155034

RESUMO

The deforestation of tropical forests raises environmental concerns worldwide. Removing the pristine forest impacts the soil, consequently affecting the environmental services it provides. Within this context, the main goal of this study was to determine how the conversion of the tropical rainforest to pasture affects soil fertility across an extended range of soil heterogeneity, including different soil types. We sampled 13 sites, among forests, recent pastures (≤7-year-old), and old pastures (≥10-year-old), on Acrisols, Ferralsols, Plinthosols, and Luvisols, across a ± 800 km geographical range in the Western Brazilian Amazon. Soils were classified taxonomically, and their superficial layer's chemical and physical properties (0-10 cm) were analyzed. Furthermore, we tested the sensibility of Actinobacteria and Proteobacteria to detect changes in these soil properties based on their ecological habitat. An inter-regional gradient of soil fertility was observed, and the sampling sites were clustered mostly by soil type and associated land use than by spatial distance. The Sum of bases, Ca + Mg, base saturation, Al saturation, and pH were consistently affected by land use, increasing after conversion to pasture, at different degrees and with a more pronounced effect on oxidic soils. The Sum of bases was the only property that increased significantly among the study sites (Radj = 0.860, p < 0.001), being able to detect the effect of anthropic land use on a larger coverage of soil types. Finally, the Actinobacteria:Proteobacteria ratio was also sensitive to the impact of forest-to-pasture conversion, with a higher ratio observed in pasture systems, and it was positively correlated with soil pH (rho = 0.469, p < 0.001). Our results consistently show that the forest-to-pasture conversion leads to strong alterations in the soil environment, with varying intensities depending on soil type.


Assuntos
Agricultura , Solo , Brasil , Conservação dos Recursos Naturais , Florestas
2.
Braz J Microbiol ; 53(1): 281-288, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35060090

RESUMO

The production of 3-indoleacetic acid (IAA) by plant growth-promoting bacteria (PGPR) stimulates root development and plant growth. In addition, morphological changes such as an increased root ramification and root hair production improves nutrient absorption and biomass accumulation. The objective of this work was to evaluate the effect of IAA-producing strains on rice in an advanced stage of its vegetative cycle. Rice was inoculated with Gluconacetobacter diazotrophicus PAL 5 and its lao- mutant, deficient in auxin production, Azospirillum baldaniorum Sp 245, and Escherichia coli DH10b. Both the mutant and wild-type G. diazotrophicus stimulated root elongation, area, volume, and diameter. However, the lao- mutant strain was the only one capable of increasing the number of roots. In turn, inoculation with A. baldaniorum had no significant effect on plant development. The inoculation with E. coli led to changes in root volume, area, and diameter, and a response that may be related to the stress caused by its presence. We conclude that the inoculation with G. diazotrophicus stimulates the root system's growth independently of their IAA production ability, suggesting that a metabolite other than IAA is responsible for this effect at advanced stages of the rice's vegetative cycle.


Assuntos
Oryza , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Indolacéticos/metabolismo , Oryza/microbiologia , Raízes de Plantas/microbiologia
3.
Front Microbiol ; 12: 657508, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967996

RESUMO

Advancing extensive cattle production is a major threat to biodiversity conservation in Amazonia. The dominant vegetation cover has a drastic impact on soil microbial communities, affecting their composition, structure, and ecological services. Herein, we explored relationships between land-use, soil types, and forest floor compartments on the prokaryotic metacommunity structuring in Western Amazonia. Soil samples were taken in sites under high anthropogenic pressure and distributed along a ±800 km gradient. Additionally, the litter and a root layer, characteristic of the forest environment, were sampled. DNA was extracted, and metacommunity composition and structure were assessed through 16S rRNA gene sequencing. Prokaryotic metacommunities in the bulk soil were strongly affected by pH, base and aluminum saturation, Ca + Mg concentration, the sum of bases, and silt percentage, due to land-use management and natural differences among the soil types. Higher alpha, beta, and gamma diversities were observed in sites with higher soil pH and fertility, such as pasture soils or fertile soils of the state of Acre. When taking litter and root layer communities into account, the beta diversity was significantly higher in the forest floor than in pasture bulk soil for all study regions. Our results show that the forest floor's prokaryotic metacommunity performs a spatial turnover hitherto underestimated to the regional scale of diversity.

4.
FEMS Microbiol Ecol ; 95(8)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31281920

RESUMO

Mimosa caesalpiniifolia Benth. is a legume native to the semi-arid region of Brazil, in the Northeast. Its successful adaptation to other locations, such as the Atlantic Forest in the Southeast region, may be related to its ability to establish symbiosis with nitrogen-fixing bacteria, especially ß-rhizobia of the genus Paraburkholderia. The objective of this work was to determine whether M. caesalpiniifolia adapted to bacterial symbionts in locals where it was introduced. Bacteria were recovered from nodules of M. caesalpiniifolia and characterized at the genetic level by BOX-PCR and sequencing of the 16S rRNA, recA, nifH, and nodC genes. Their symbiotic effectiveness was assessed under axenic conditions. M. caesalpiniifolia nodulated mainly with Paraburkholderia sabiae and a few strains of Rhizobium in the Southeast. On the other hand, the symbionts found in the Northeast were, predominantly, Paraburkholderia diazotrophica. Regardless of its origin, P. diazotrophica promoted a superior accumulation of plant biomass than other bacterial species. The results presented here demonstrate the ability of M. caesalpiniifolia to adapt to bacterial populations outside its location of origin, and indicate that, in this case, the symbiotic effectiveness was associated with the taxonomical classification of the strains.


Assuntos
Adaptação Fisiológica/fisiologia , Burkholderiaceae/classificação , Mimosa/microbiologia , Brasil , DNA Bacteriano/genética , Fabaceae , Florestas , Filogenia , RNA Ribossômico 16S/genética , Rhizobium/genética , Nódulos Radiculares de Plantas , Análise de Sequência de DNA , Simbiose
5.
Braz. j. microbiol ; 48(1): 95-100, Jan.-Mar. 2017. tab
Artigo em Inglês | LILACS | ID: biblio-839348

RESUMO

Abstract The family Leguminosae comprises approximately 20,000 species that mostly form symbioses with arbuscular mycorrhizal fungi (AMF) and nitrogen-fixing bacteria (NFB). This study is aimed at investigating and confirming the dependence on nodulation and biological nitrogen fixation in the specie Piptadenia gonoacantha (Mart.) Macbr., which belongs to the Piptadenia group. Two consecutive experiments were performed in a greenhouse. The experiments were fully randomized with six replicates and a factorial scheme. For the treatments, the two AMF species and three NFB strains were combined to nodulate P. gonoacantha in addition to the control treatments. The results indicate this species’ capacity for nodulation without the AMF; however, the AMF + NFB combinations yielded a considerable gain in P. gonoacantha shoot weight compared with the treatments that only included inoculating with bacteria or AMF. The results also confirm that the treatment effects among the AMF + NFB combinations produced different shoot dry weight/root dry weight ratios. We conclude that AMF is not necessary for nodulation and that this dependence improves species development because plant growth increases upon co-inoculation.


Assuntos
Micorrizas , Bactérias Fixadoras de Nitrogênio , Fabaceae/microbiologia , Simbiose , Nódulos Radiculares de Plantas/microbiologia , Nodulação , Fixação de Nitrogênio
6.
Braz J Microbiol ; 48(1): 95-100, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27876549

RESUMO

The family Leguminosae comprises approximately 20,000 species that mostly form symbioses with arbuscular mycorrhizal fungi (AMF) and nitrogen-fixing bacteria (NFB). This study is aimed at investigating and confirming the dependence on nodulation and biological nitrogen fixation in the specie Piptadenia gonoacantha (Mart.) Macbr., which belongs to the Piptadenia group. Two consecutive experiments were performed in a greenhouse. The experiments were fully randomized with six replicates and a factorial scheme. For the treatments, the two AMF species and three NFB strains were combined to nodulate P. gonoacantha in addition to the control treatments. The results indicate this species' capacity for nodulation without the AMF; however, the AMF+NFB combinations yielded a considerable gain in P. gonoacantha shoot weight compared with the treatments that only included inoculating with bacteria or AMF. The results also confirm that the treatment effects among the AMF+NFB combinations produced different shoot dry weight/root dry weight ratios. We conclude that AMF is not necessary for nodulation and that this dependence improves species development because plant growth increases upon co-inoculation.


Assuntos
Fabaceae/microbiologia , Micorrizas , Bactérias Fixadoras de Nitrogênio , Simbiose , Fixação de Nitrogênio , Nodulação , Nódulos Radiculares de Plantas/microbiologia
7.
Ecology ; 97(10): 2760-2771, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27859123

RESUMO

Anthropogenic pressures on tropical forests are rapidly intensifying, but our understanding of their implications for biological diversity is still very limited, especially with regard to soil biota, and in particular soil bacterial communities. Here we evaluated bacterial community composition and diversity across a gradient of land use intensity in the eastern Amazon from undisturbed primary forest, through primary forests varyingly disturbed by fire, regenerating secondary forest, pasture, and mechanized agriculture. Soil bacteria were assessed by paired-end Illumina sequencing of 16S rRNA gene fragments (V4 region). The resulting sequences were clustered into operational taxonomic units (OTU) at a 97% similarity threshold. Land use intensification increased the observed bacterial diversity (both OTU richness and community heterogeneity across space) and this effect was strongly associated with changes in soil pH. Moreover, land use intensification and subsequent changes in soil fertility, especially pH, altered the bacterial community composition, with pastures and areas of mechanized agriculture displaying the most contrasting communities in relation to undisturbed primary forest. Together, these results indicate that tropical forest conversion impacts soil bacteria not through loss of diversity, as previously thought, but mainly by imposing marked shifts on bacterial community composition, with unknown yet potentially important implications for ecological functions and services performed by these communities.


Assuntos
Biodiversidade , Florestas , Microbiologia do Solo , Agricultura , Bactérias/genética , RNA Ribossômico 16S , Solo
8.
PLoS One ; 9(6): e101238, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24971901

RESUMO

The correlation of multivariate data is a common task in investigations of soil biology and in ecology in general. Procrustes analysis and the Mantel test are two approaches that often meet this objective and are considered analogous in many situations especially when used as a statistical test to assess the statistical significance between multivariate data tables. Here we call the attention of ecologists to the advantages of a less familiar application of the Procrustean framework, namely the Procrustean association metric (a vector of Procrustean residuals). These residuals represent differences in fit between multivariate data tables regarding homologous observations (e.g., sampling sites) that can be used to estimate local levels of association (e.g., some groups of sites are more similar in their association between biotic and environmental features than other groups of sites). Given that in the Mantel framework, multivariate information is translated into a pairwise distance matrix, we lose the ability to contrast homologous data points across dimensions and data matrices after their fit. In this paper, we attempt to familiarize ecologists with the benefits of using these Procrustean residual differences to further gain insights about the processes underlying the association among multivariate data tables using real and hypothetical examples.


Assuntos
Biodiversidade , Modelos Estatísticos , Fenômenos Fisiológicos Vegetais , Solo , Ecologia/métodos , Análise Multivariada
9.
Sci Total Environ ; 408(2): 349-55, 2009 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-19853281

RESUMO

The Upper Solimões river region, western Amazon, is the homeland of indigenous populations and contains small-scale agricultural systems that are important for biodiversity conservation. Although traditional slash-and-burn agriculture is being practiced over many years, deforestation there is relatively small compared to other Amazon regions. Pastures are restricted to the vicinity of cities and do not spread to the small communities along the river. Inceptisols are the main soil order (>90%) in the area and have unique attributes including high Al content and high cation exchange capacity (CEC) due to the enrichment of the clay fraction with 2:1 secondary aluminosilicates. Despite its importance, few studies have focussed on this soil order when considering land use effects on the fertility of Amazon soils. Thus, the objective of this study was to evaluate changes in soil fertility of representative land use systems (LUSs) in the Upper Solimões region, namely: primary rainforest, old secondary forest, young secondary forest, agroforestry, pasture and agriculture. LUSs were significantly differentiated by the chemical attributes of their topsoil (0-20 cm). Secondary forests presented soil chemical attributes more similar to primary rainforest areas, while pastures exhibited the highest dissimilarity from all the other LUSs. As a whole, soil chemical changes among Inceptisols dominated LUSs showed patterns that were distinct from those reported from other Amazon soils like Oxisols and Ultisols. This is probably related to the presence of high-activity clays enriched in exchangeable aluminum that heavily influenced the soil chemical reactions over the expected importance of organic matter found in most studies conducted over Oxisol and Ultisol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...